用 OpenCV-Python 检测对象
原文:https://www.geesforgeks.org/detect-an-object-with-opencv-python/
OpenCV 是用于计算机视觉、机器学习和图像处理的巨大开源库,现在它在实时操作中发挥着重要作用,这在当今的系统中非常重要。通过使用它,人们可以处理图像和视频来识别物体、人脸,甚至是人类的笔迹。本文着重于检测对象。
注:详见OpenCV 介绍。
目标检测
对象检测是一种与计算机视觉、图像处理和深度学习相关的计算机技术,用于检测图像和视频中的对象实例。在本文中,我们将使用被称为哈尔级联的东西来进行物体检测。
瀑布式头发
哈尔级联分类器是一种有效的目标检测方法。这种方法是由保罗·维奥拉和迈克尔·琼斯在他们的论文中提出的,利用简单特征的增强级联快速检测目标。哈尔级联是一种基于机器学习的方法,其中使用大量的正图像和负图像来训练分类器。
- 正面图像–这些图像包含我们希望分类器识别的图像。
- 负像–其他一切的像,不包含我们想要检测的物体。 要求。
下载要求的步骤如下:
-
在终端运行以下命令安装 opencv。
```py pip install opencv-python
```
-
运行以下命令在终端安装 matplotlib。
```py pip install matplotlib
```
-
要将下面代码中使用的哈尔级联文件和图像作为 zip 文件下载,请单击此处的。
注意:将 XML 文件和 PNG 图像放在与 Python 脚本相同的文件夹中。
履行
使用的图像:
打开图像
import cv2
from matplotlib import pyplot as plt
# Opening image
img = cv2.imread("image.jpg")
# OpenCV opens images as BRG
# but we want it as RGB and
# we also need a grayscale
# version
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Creates the environment
# of the picture and shows it
plt.subplot(1, 1, 1)
plt.imshow(img_rgb)
plt.show()
输出:
识别
我们将使用 OpenCV 的detectMultiScale()
功能来识别大标志和小标志:
# Use minSize because for not
# bothering with extra-small
# dots that would look like STOP signs
found = stop_data.detectMultiScale(img_gray,
minSize =(20, 20))
# Don't do anything if there's
# no sign
amount_found = len(found)
if amount_found != 0:
# There may be more than one
# sign in the image
for (x, y, width, height) in found:
# We draw a green rectangle around
# every recognized sign
cv2.rectangle(img_rgb, (x, y),
(x + height, y + width),
(0, 255, 0), 5)
以下是懒人开发者的完整脚本:
import cv2
from matplotlib import pyplot as plt
# Opening image
img = cv2.imread("image.jpg")
# OpenCV opens images as BRG
# but we want it as RGB We'll
# also need a grayscale version
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Use minSize because for not
# bothering with extra-small
# dots that would look like STOP signs
stop_data = cv2.CascadeClassifier('stop_data.xml')
found = stop_data.detectMultiScale(img_gray,
minSize =(20, 20))
# Don't do anything if there's
# no sign
amount_found = len(found)
if amount_found != 0:
# There may be more than one
# sign in the image
for (x, y, width, height) in found:
# We draw a green rectangle around
# every recognized sign
cv2.rectangle(img_rgb, (x, y),
(x + height, y + width),
(0, 255, 0), 5)
# Creates the environment of
# the picture and shows it
plt.subplot(1, 1, 1)
plt.imshow(img_rgb)
plt.show()
输出: